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Pathogen and virulence factors

« Pathogen
* A microbe that disease through infection

« Can be bacterial, viral, fungal, etc

* Virulence factors (VFs)

« The molecules (gene products) that allows a microbe to be a pathogen
* Assist the bacterium colonize the host at the cellular level.

« Conventional VFs include secreted proteins, such as toxins and enzymes, and cell-
surface structures

» Also include genes that are indirectly involved in pathogenesis, such as secretion
machineries, catalases, etc.

Chen, L., et al. Nucleic Acids Research. 2005



Use Clostridium difficile (2RZ#1£E) as an example

« Spore-forming, Gram-positive, anaerobic bacillus

« Gastrointestinal pathogen; disease associated with C. difficile infection (CDI) ranges from mild
diarrhea to colitis

« Main cause of antibiotic-associated diarrhea

* |In US, about 200,000 people are infected annually. In Hong Kong, incidence of C.
difficile infection in the Prince of Wales Hospital increased approximately threefold from 2009 to
2013

C. difficile colonies on a blood agar plate Scanning electron micrograph of C. difficile spores

Smits, W.K., et al. Nat Rev Dis Primers. 2016



Different types of VFs of C. difficile

> | TcdA/TcdB « Large clostridial toxins Toxicity

« Directly target host cells
Flagellae

C. difficile (

Cell membrane

Flagellin * Promote adherence to host cells
* Facilitate translocation of virulence factors across cell Motil |ty

= membranes
S-layer > SlpA E—

Cellwalll > PG fragments —— + Bound to the cell wall
« Formed of SIpA and decorated with cell wall protein (CWP) family

- Promote aggregation

Adherence

* a highly deacetylated peptidoglycan (PG) cell wall containing unique secondary
cell wall polymers
« maintain cell shape and integrity, and anchor cell wall proteins (CWP)

Kirk, J.A. et al. Microb Biotechnol. 2016. Rasko, D. et al. Nat Rev Drug Discov. 2010



Regulation of the C. difficile toxins.
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Chandrasekaran, R. et al. FEMS Microbiology Reviews. 2017



Analysis of 12,621 C. difficile genomes reveals 5 distinct clades

B ciade 1 P clade 4 P ciade cn _
0 Clade 2 i ' Clade 5 B ciace c-in * Phylogeny tree is constructed to
' | Clade3 Clade C I Unassignedioutlier* show to evolutionary relationships
among all the genomes
« Taxonomically divergent clades
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Toxins are also divergent across clades
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TcdB was much more diverse in amino-acid
sequence than TcdA, suggesting a complex
and accelerated evolution of the tcdB gene

Knight, D.R., et al. Elife. 2021



Host response to C. difficile toxins
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Rasko. D. et al. Nat Rev Drug Discov. 2010



Microbiota-mediated defenses against C. difficile

The intact microbiota converts primary bile acids into Antibiotic-mediated disruption of the
secondary bile acids, which inhibit the growth of C. difficile microbiota depletes primary bile acid
converters
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Abt, M.C.et al. Nat Rev Microbiol. 2016



Use sequencing data to characterize CDI-related changes systematically

Nature Communications. 2021

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

GUT MICROBIOTA

Clostridioides difficile uses amino acids associated
with gut microbial dysbiosis in a subset of patients
with diarrhea

Eric J. Battaglioli ', Vanessa L. Hale***, Jun Chen”, Patricio Jeraldo? Coral Ruiz-Mojica',

Bradley A. Schmidt’, Vayu M. Rekdal’, Lisa M. Till', Lutfi Hug?, Samuel A. Smits°,
William J. Moor’, Yava Jones-Hall®, Thomas Smyrk’, Sahil Khanna', Darrell S. Pardi',

Madhusudan Grover’, Robin Patel®, Nicholas ChiaZ Heidi Nelson?, Justin L. Sonnenburg?®,

Gianrico Farrugia®, Purna C. Kashyap!1%t

Host response to C diffinfection

Science Translational Medicine. 2018
ART'CLE W) Check for updates

Clostridioides difficile exploits toxin-mediated
inflammation to alter the host nutritional landscape
and exclude competitors from the gut microbiota

Joshua R. Fletcher!, Colleen M. Pike® !, Ruth J. Parsons® !, Alissa J. Rivera', Matthew H. Foley1,
Michael R. McLaren® !, Stephanie A. Montgomery® 2 & Casey M. Theriot® 1™

C. d/ffexplores disrupted microbial community



Measure microbial and host transcriptional activity using sequencing

16S rRNA genes are conserved among bacterial species e ™
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« For host and single bacterial genomes

« Abundance of all the bacteria ISl ,
. Potentially reflect the activity of the « Transcriptional abundance of all the genes in the genom
« For microbial community
Transcriptional activities of all the genes in all the

microbial community .
genomes

https://www.repertoire.co.jp/en/research/technology/16srrna



Whether the pathogen can exploit an inflamed environment in order to thrive

Hypothesis Mice Mic Mic
Toxins induces inflammation, which activates
host response and alter pathogen metabolism. | T T

/ Antibiotic treatment

Challenged withl Challenged with
/ C d/‘fﬁc//e/ / tcdR mutant C. d/’fﬁC/'/e

Create tcdR mutant C diff
Fails to produce detectable toxin activity

Doesn’ t elicit significant inflammatory damage
to host gut tissue
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Bacterial RNA-seq
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Carbohydrate and amino acid uptake and utilization pathways up-regulated

CD2416 (Transcription antiterminator, PTS operon regulator)
CD2459A (conserved hypothetical protein)

CDO0044 (conserved hypothetical protein)

CD2417 (PTS system, Sorbitol-like 1IB component(Glucitol))
CDO0045 (putative sugar-phosphate aldolase)

CD1031 (putative cell wall anchored protein)

CD0043 (PTS system, galactitol-specific IC component)
CD3447 (Transcription antiterminator, PTS operon regulator)
CD2281 (PTS system, fructc wnitol family I1B component)
®D3449 (putative tagatose-6-phosphate ketose/aldose isomerase AgaS)
CD3448 (putative tagatose-bisphosphate aldolase GatY)
CD1029 (putative cell wall anchored protein)

CD0762 (sriR)

CD3091 (treA)

CD2549 (ABC-type transport system, sugar-family permease)
CD3136 (bglA7)

CD3137 (bglF5)

CD3279 (PTS system, mannose/fructose/sorbose 11B)
CD3275 (putative phosphosugar isomerase)

CD3278 (PTS system, mannose/fructose/sorbose IIA)
CD3276 (PTS system, mannose/fructose/sorbose /ID)
CD3277 (PTS system, mannose/fructose/sorbose IIC)
CD3081 (PTS system, lactose/cellobiose-family IIC)

CD0234 (csrA)
©D0235 (fiiS1)
€D0232 (figL)
CD0237 (AiD)
CD0233 (fiW)
CD0236 (fiiS2)
CD0231 (figk)
CD0258 (fiL)
CD0271 (AiN1)
CD0270 (fiiM)

Days post challenge:

3
2
1
Carbohydrate 0
metabolism '
log} fold change
Flagella

2 4

CD2344 (putative membrane protein)
CD2343 (cat1)

C 1 (abfD)

CD2340 (uncharacterised protein)
CD2342 (sucD)

CD2339 (cal2)

CD2426 (buk1)

CDO0116 (putative ferredoxin/favodoxin oxidoreductase)
CDO114 (putative atp/gtp-binding protein)

CDO0115 (putative 4Fe-4S ferredoxin, iron-sulfur binding domain protein)
CDO0117 (putative ferredoxin/flavodoxin oxidored )
CD0666 (cdd3)

CDO0665 (cdd2)

CD0667 (cdd4)

CD0991 (leuD)

CD0989 (leuA)

CD0990 (leuC)

CD0992 (leuB)

€D2389 {putative b ig

CD2390 (Tr ip | regulator, beta-l repressor)
CD2388 (putative peptidoglycan-binding/hydrolysing protein)
CD1444 (putative exported poly de tylase)

CD2393 @utah‘ve glycosyl transferase, family 51)
CD1740 (Glycine/: ine/betair di B)

CD3442 (putative peptidase, M24 family)
CD2591 (itaE)

CD3441 (putative pyridoxal P depend! )
CD0153 (hpdB)

CD0138 (glycine/s ine/betait b)

CDO0740 (putative pyridoxal phosphate-dependent aminotransferase)
ODOifetey

CD1919 (eutT)

CDO759 (pfiB)

CD2956 (atpA)

Days post challenge:

Butyrate
metabolism

Lantibiotic/multidrug ABC-type
transporter

BCAA biosynthesis

Peptidoglycan
metabolism

Amino acid
metabolism

ILipid metabolism
IATP production

2 4



C. difficile toxin

activity induces a highly inflammatory gut environment

wild type vs. tcdR

regulation of inflammatory response

regulation of peptide secretion
signal release

positive regulation of proteolysis
organic acid transport

regulation of small molecule metabolic process

regulation of inflammatory response—

humoral immune response=

n=6

n=8 Day 2
| n=16
| n=9 Day 4
0 1 2 3

Normalized enrichment score

Multiple MMPs including Mmp3, Mmp10, Mmp12, and

Mmp1l3 are upregulated

Shen, E., et al. Commun Biol. 2020



Summary |

Reverse genetics: change genotype -> phenotype
* Host side

* Multiple MMPs are degraded by toxins
« Bacterial side

C. diff responds by turning on expression of genes that can use these amino acids for growth.



Motivation of study |
115 patients with diarrhea C-Dbifficile-infection->-microbialcormmaniy-aheration

Negative for C. difficile (Antibiotics = ) Preformed microbial community = Increased susceptibility to CDI
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To evaluate community-specific effects on susceptibility to CDI

Mice Mice
/ Dysbiotic community / / Healthy-like community /
dysbiotic mice healthy-like mice
/ 16S rRNA gene sequencing /
/ Challenged with C. difficile /

/ 16S rRNA gene sequencing /




Dysbiotic microbial community = Increased susceptibility to CDI
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Microbial communities after C. difficile challenge were not
significantly different from the distance between the microbial
communities before and after C. difficile challenge



To determine the altered metabolic states

Mice Mice
/ Dysbiotic community / / Healthy-like community /
dysbiotic mice healthy-like mice

________________________________ L

/ Metabolomics /




Proline provides a competitive advantage to C. difficile

Proline shows the greatest difference between
Hoalty-Ke dysbiotic and healthy-like

Dy sbiotic

Bl

Amino acids (ng)/stool (mg)
|
[




To determine the relevance of proline for C. difficile colonization

Mice

Mice

/ Dysbiotic community / / Healthy-like community /

\ 4

dysbiotic mice

\ 4

healthy-like mice

__________________________________ l

/

Challenged w/
C. difficile

/ / Challenged w/ /
prdB mutant C. difficile

prdB mutant C. difficile unable to use proline as an energy source



Proline availability was an important factor governing colonization
of C. difficile in dysbiotic mice
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« prdB mutant was undetectable in healthy-like mice at day 1 after challenge
 Significant reduction in dysbiotic mice at day 2



To determine the altered metabolic states

Mice Mice
/ Dysbiotic community / / Healthy-like community /
dysbiotic mice healthy-like mice
/ 16S rRNA gene sequencing /
delivered mouse-adapted hegllthy human—derived FMT gut /
micraobial community
/ 16S rRNA gene sequencing /
/ Challenged with C. difficile /

/ 16S rRNA gene sequencing /




FMT reduces free proline and susceptibility to CDI
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significant shift in the gut microbial communities of
dysbiotic mice to resemble the human fecal donor
community after FMT

significant decrease in free proline after FMT



Summary |l

« Altered microbe mixes lead to an increase in certain amino acids in the gut, particularly proline
« C. difficile can use proline as its main food source, giving it a competitive advantage over
microbes that don’t consume the amino acid as readily
« Can explain the following situations:
« some people are more susceptible to deadly C. difficile infections because antibiotic
usage disrupt their gut microbial community
« person might harbor the C. diff bacteria in their gut but do not become sick because the
beneficial bacteria in their intestine keep it check



Take home message

C. difficile genomes and its toxins are diverse

C. difficile infection includes interactions between host-bacteria and microbe-

microbe

« Toxins induce inflammation and host responses. C. difficile will also take
advantage of the inflammation and altered microbial community

* Next generation sequencing technologies are powerful tools to characterize
and analyze CDI related alteration systematically

* Proper experimental design is necessary in order to incorporate sequencing

data into the study
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